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Dimensionless criteria are derived for evaluating the significance of interphase and 
interparticle temperature gradients in fixed bed catalytic reactors. Comparison of the 
criteria reveals that the magnitudes of the heat transport resistances are generally in 
the order: interparticle > interphase > intraparticle. The criteria show the critical 
importance of decreasing the diameters of the reactor and the catalyst particles to 
minimize transport limitations. Dilution of the bed with inert solids is shown to be 
advantageous only at Reynolds numbers sufficiently low that the effective thermal 
conductivity of the bed is insensitive to the flow rate. 

IR‘TRODUCTION 

Rate data for heterogeneous catalytic re- 
actions are frequently impaired by the oc- 
currence of temperature gradients which 
seriously disguise the intrinsic kinetics or 
selectivities. In experimental fixed bed re- 
actors with heat exchange at the wall, these 
gradients can occur in three domains: (i) 
intraparticle within a porous catalyst par- 
ticle; (ii) interphase between the external 
surface of the particle and the fluid ad- 
jacent to it; and (iii) interparticle between 
the local fluid regions and the wall. The 
intrusion of gradients can cause severe de- 
viations from the ideal isothermal per- 
formance upon which simple kinetic in- 
terpretations are based. Consequently, the 
experimenter requires criteria to determine 
whether heat transport limitations in any 
domain are significantly altering his results. 

Anderson (1) derived such a criterion for 
the absence of significant temperature gra- 
dients within a catalyst particle. If the dc- 
viation of the observed rate (A (per unit 
particle volume) from the isothermal rate 
is to be less than 5%, his criterion requires: 

qa (TP) 2 < Q753 
xT, - B ’ 0) 

where g is the absolute value of the heat, of 

reaction, h is the thermal conductivity of 
the particle, rP is its radius, E is the true 
activation energy, R is the gas constant, 
and T, is the absolute temperature. The 
object of this paper is to derive analogous 
criteria for the interphase and interparticle 
domains. 

NOMDNCLATURE 

A pre-exponential factor in Arrhenius 
expression (set-l for first-order reac- 
tion) 

b dilution ratio (ml inert/ml catalyst) 
B parameter, = G(exp ]0,,,\)/8 
(Biot)i thermal Biot number = hd,/X 
(Biot), thermal Biot number at the wall = 

4 
E 

p’ 
* 

h 

hw 

AH 

k 

diameter of catalyst particle (cm) 
activation energy for catalytic reac- 
tion (g-Cal/g-mole) 
function of concentration 
mass velocity (g/set cm2 of total or 
superficial bed cross-section) 
gas-solid heat transfer coefficient 
(g-cal/sec cm2 “C) 
heat transfer coefficient at the wall 
(g-cal/sec cm2 “C) 
heat of chemical reaction (g-Cal/ 
g-mole) 
intrinsic rate constant per unit 
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Q 

r 

f-P 
R 
Re 
RO 
CR 

volume of particle (set-l for first- 
order reaction) 
effective thermal conductivity across 
bed (g-cal/sec cm “C) 
absolute value of heat of reaction 
(g-Cal/g-moIe) 
radial coordinate in tubular reactor 
(cm) 
particle radius (cm) 
gas constant (g-Cal/g-mole “K) 
Reynolds number, = Gd,/p 
radius of tubular reactor (cm) 
reaction rate per unit particle volume 
(g-mole/see cm3) 
reaction rate per unit bed volume 
(g-mole/see cm3), = a(1 - ~)/(l - 
b) 
absolute temperature (“K) 
temperature of bulk fluid adjacent 
to a particle (“K) 
temperature of wall (“K) 
dimensionless radius of reactor, = 
f-/R0 
dimensionless parameter defined by 
Eq. (llb) 
void fraction in reactor bed 
effective thermal conductivity of 
particle (g-Cal/see cm “C) 
viscosity (g/see cm) 
dimensionless temperature, = (T - 
Tw)E/RTw2 

DISCUSSION 

Interphase Transport 

For the gas-solid catalyst system, Fulton 
and Crosser (‘7) experimentally demon- 
strated that the heat transfer resistance of 
the boundary layers or ‘Yilm” adjacent to 
the particle can be much larger than the 
resistance within the particle. Consequently, 
the catalyst particle can often be treated 
as isothermal at a temperature dictated by 
heat transfer in the boundary layers (6,s). 
In the case of a highly exothermic reaction, 
the particle temperature may then be con- 
siderably greater than that of the bulk 
stream. In contrast, the principal mass 
transfer resistance occurs within the cata- 
lyst particle, so that the external concen- 
tration gradient is usually negligible. 

A criterion for detecting the onset of an 

interphase heat transport limitation will 
now be derived by the perturbation ap- 
proach (1). Assume that the rate of re- 
action depends on temperature in the Ar- 
rhenius fashion: 

CR = Ae-E’RTf(c), (2) 

where A is a pre-exponentia1 or frequency 
factor and f(c) is a function of concentra- 
tion. Then the rate at any temperature T 
close to !Z’,, the temperature of the adjacent 
bulk fluid, is given by a TayIor expansion 
of Eq. (2) about T,, with terms higher than 
the first neglected: 

T-T, E 
1+7.m. 1 (3) 

0 0 

where a,, is the rate which would prevail if 
the particle temperature were at To. 

An energy balance for a spherical cata- 
lyst, particle gives : 

q(R 5 (T~)~ = h(T - T,)&r(~,) 2, (4) 

where h is the heat transfer coefficient from 
fluid to catalyst particle. Heat conduction 
to adjacent touching particles is assumed 
negligible. Simplifying and combining Eq. 
(4) with Eq. (3) yields: 

(5) 

In order for the rate & not to deviate from 
& by more than an acceptable amount, 
say 5%, the second term on the right must 
be less than 0.05. The resulting dimension- 
less criterion, 

is valid whether diffusional limitations 
exist in the particle or not. 

Note that the criterion is similar in form 
to Eq. (1)) with h replacing X/r,. Com- 
parison shows that the interphase heat 
transfer resistance becomes limiting be- 
fore the intraparticIe heat transfer re- 
sistance providing: 

(Biot)i = F < 10, (7) 



a condition which is usually met in labora- 
tory reactors. Thus, interphase heat trans- 
port limitations can be expected for fast 
reactions with high heats of reaction at low 
Reynolds numbers (low h) . 
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occurs, axial conduction can be neglected 
(3). At the hot spot, the sensible heat term 
can also be omitted from the conservation 
equation for energy, which simplifies to: 

As an example, consider a study of the 
vapor-phase dehydrogenation of cyclo- 
hexane at 700°K and 30 atm over a plati- 
nun-alumina catalyst of 0.2-cm diameter. 
For these conditions, reaction rates of the 
order of 1 X 1O-1 g-mole/set ml catalyst 
are typical. The endothermic heat of re- 
action is 52 kcal/mole and a slightly higher 
activation energy of 60 kcal/mole is as- 
sumed. For a gas mixture with 6 moles of 
hydrogen/mole of cyclohexane, the heat 
capacity is about 1.07 Cal/g “C and the 
Prandtl number about 0.33. For a Reynolds 
number of 25 and mass velocity of 81 g/hr 
cm” (166 lb/hr ft2), the correlat’ion of De 
Acetis and Thodos (5) gives a heat transfer 
coefficient of 0.025 cal/sec cm” “C. A value 
of 0.03 results for the term on the left of 
the criterion, which considerably exceeds 
the value of 0.0034 for the term on the 
right. Consequently, the heat transfer re- 
sistance of the film is significantly in- 
fluencing the experimental results. 

= (-AH)@ (5) 

in which k, is the effective thermal conduc- 
tivity of the bed given in correlations 
(9, IO), E is the void fraction, and b is the 
dilut’ion ratio (inert/catalyst). The latter 
two quantities are introduced to convert 
the reaction rate per pellet to a’, the local 
rate per unit bed volume. It will also be 
assumed, subject to checking, that intra- 
phase and interphase transport limitations 
are negligible at the onset of the inter- 
particle limitation. 

Chambre and Grossman (4) derived an 
analytic solution to Eq. (8) for the radial 
temperature profiles: 

e - emax = -2 ln(RuZ + 1) (9) 

where the dimensionless temperature and 
radius are defined: 

In terparticle Transport 

When a fixed bed is operated as an 
integral reactor, radial and axial temper- 
ature gradients often cause severe devia- 
tions from the desired isothermal, plug- 
flow operation. A complete mathematical 
descript,ion of the problem involves coupled 
partial differential equations. Numerical 
solutions (3, 6) yield radial temperature 
profiles which are approximately parabolic. 
The fluid temperature along the axis rises 
to a maximum at the “hot spot” before 
gradually returning to T,, the wall tem- 
perature. Carberry and TZThite’s study (3) 
showed that the yields obt’ained are quite 
sensitive to radial heat transport, but 
virtually insensitive to radial mass 
transport. 

u=L 
RO (lob) 

and R, is the radius of the reactor. The 
parameters of the solution are given by: 

R = ; expl&,,/, (lln) 

6 = (- AH)CR’,RC?E 
k,Tw2R ’ (lib) 

where Q,,,, is the maximum dimensionless 
temperature at the hot spot (cold spot if 
endothermic) and @lW is the local reaction 
rate evaluated at the wall temperature. By 
utilizing an assumed boundary condition 
at the wall: 

An approximate criterion for determining 
the existence of a radial interparticle heat 
transport limitation will now be derived. 
For beds with length-to-pellet diameter 
ratios sufficiently great that plug flow 

?I, = 1: e = 0, w> 

they obtained a relation between O,,,,, 
and 6: 

- 

6 = X[exp(- 0.5\0,,,l) - exp(- je,,,,l)]. 
_ - (13) 
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For the case of interest here, 6, and hence 
B, are small when the radial temperature 
gradient is just starting to become sig- 
nificant. Consequently, the natural log 
term of Eq. (9) can be expanded so that 
the equation reduces to a parabola: 

0 - &ax = -2B u2. (14) 

Adopting boundary condition (12) and ex- 
panding the exponential, an expression for 
e max is obtained: 

e a/4 max = ~ = 614. 
1 - 614 (15) 

As expected, Eq. (13) also reduces to 6/4 
for small 6. 

In small laboratory reactors, the heat 
transfer resistance at the wall usually 
cannot be neglected. The appropriate 
boundary condition to replace Eq. (12) is: 

k c1T 
e dr ,.=R,> 

= h,(T - T,)Ir=~ar (16) 

in which h, is the heat transfer coefficient 
at the wall given by correlation (9). In 
dimensionless terms Eq. (16) becomes: 

de h,Ro 

Ti- u=l = k, * 

eu=l = FWro R. ~._. 

2 
e = 

TP 
u 1, 

(17) 

where the Biot number at the wall: 

hd 
(Biot), = 3. 

ke 
w 

expresses the ratio of thermal transport at 
the reactor wall to that in the core of the 
bed. Using condition (17)) one obtains: 

8 ~. 22 (19) 
(Biot), R. 1 

which reduces to 6/4 when the wall heat 
transfer resistance is small (r,/R, << 1). 
For endothermic reactions, 8,,,, is negative 
because 6 is negative, but Eq. (14) still 
applies. 

The effect of the radial temperature 
gradient on the reaction rate can now be 
determined by substituting Eqs. (10a) and 

(14) into (3) and integrating across the 
cross-section : 

*r(l)%’ = & 
/ 

’ (1 + emax - 2Bu2)2rrudu. 
0 

(20) 
There results : 

- 

- = 1 + fhn,, - B, @to (21) 

where (R’ is the average reaction rate at 
the cross-section of the hot spot. For 
quasi-isothermal behavior across the bed, 
a’ must not deviate from a’, by more than 
an acceptable 5%. Hence: 

[Rn,x - B] < 0.05. (22) 
When the heat transfer resistance at the 

wall is negligible (i.e., Ro/rp > loo), sub- 
stitut,ion of Eqs. (lla) and (15) into (22) 
yields the dimensionless criterion : 

qii’Ro2 
< 04Ew k,T, ’ E ’ (23) 

Note that the functional form is similar to 
Eq. (1)) with the reactor radius replacing 
the particle radius, and the effective 
thermal conductivity of the bed replacing 
that of the particle. Since R, >>r, and k, 
approaches the order of magnitude of h at 
low Reynolds numbers, the interparticle 
transport problem is usually much more 
severe than the intraparticle one. 

Comparison with the interphase criterion 
shows that the interparticle resistance be- 
comes limiting first unless: 

&#9($) <5.3. (24) 

This condition is achieved only for low 
values of (Ro/rp) or high dilution ratio b. 
Once the interparticle criterion is violated, 
the interphase heat transfer resistance will 
eventually become limiting also. 

When the heat transfer resistance at the 
wall is significant, the interparticle criterion 
becomes : 

q(R’Roz 0.4RT,/E 
J&T, < [l -I- 8r,/Ro(Biot),]’ (25) 

The data of Yagi and Kunii (9) yield wall 
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Biot numbers of 0.8 to 2 for Re < 100 and 
0.05 < rp/Ro < 0.2, so the denominator be- 
comes of the order of 2. Thus heat transfer 
resistance at the wall aggravates the inter- 
particle transport problem in small labora- 
tory react,ors. 

Consider the previous example of cyclo- 
hexane dehydrogenation, now performed in 
a l-cm i.d. reactor with an undiluted bed 
of 0.4 void fraction. The thermal conduc- 
tivity of the gas mixture is estimated to be 
5 X 10m4 cal/sec cm “C. The correlations of 
Yagi and Kunii (9) yield an effective bed 
conductivity of 5 x 1O-3 cal/sec cm “C and 
a wall Biot number of 2. A value of 0.2 re- 
sults for the left side of the criterion, con- 
siderably exceeding the value of 0.005 for 
the right. Hence, significant radial inter- 
particle heat t’ransport limitations are in- 
dicated for this case. 

CONCLUSIONS 

Simple criteria provide a means for 
evaluating the significance of interparticle, 
interphase, and intraparticle heat transport 
limitations, and for assessing the best ways 
to minimize them. Reducing the reactor 
radius is particularly important because the 
interparticle criterion depends explicitly on 
Ro2 and because the mass velocity is in- 
versely proportional to Ro2 at constant 
mass flow. While h and Ic, depend only 
weakly on mass velocity at low Reynolds 
numbers, they become proportional to 
about the 0.6 and 1.0 powers, respectively, 
of the mass velocity at Re > 100. Conse- 
quently, the interparticle criterion becomes 
effectively proportional to the fourth power 
of R, and the int.erphase criterion to the 
1.2 power at higher Reynolds numbers. De- 
creasing the reactor radius is therefore a 
critical step in minimizing both transport 
resistances. 

Dilution of the bed with inert particles, 
reducing the rate per unit volume, is often 
used to minimize the interparticle transport 
problem. However, in diluting the bed, the 
mass velocity is reduced proportionately. 
The interparticle criterion shows that di- 
lution will be advantageous in minimizing 
radial gradients only if the reactor is op- 
erating at Reynolds numbers sufficiently 
low that Ic, is relatively insensitive to the 
mass velocity (i.e., Re < 100). It should 
also be noted that bypassing and residence 
time effects can intervene if a dilution cri- 
terion is exceeded (8). 

Finally, changing to smaller particles 
reduces both the interphase and intrapar- 
title heat transport resistances, as well as 
the corresponding mass transfer resistances. 
Should these steps prove inadequate, the 
reaction rate can be lowered by changing 
process conditions or by operating the re- 
actor differentially. 
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